pusing nihh liat buannyak tulisan -.-
b'hubung uda ngantuck" ,, saia copy_paste adjah dr om GOOGle..
nih,, paradox zeno :
Zeno’s Paradox of the Tortoise and Achilles
![]() |

Zeno's Paradox may be rephrased as follows. Suppose I wish to cross the room. First, of course, I must cover half the distance. Then, I must cover half the remaining distance. Then, I must cover half the remaining distance. Then I must cover half the remaining distance . . . and so on forever. The consequence is that I can never get to the other side of the room.The Tortoise challenged Achilles to a race, claiming that he would win as long as Achilles gave him a small head start. Achilles laughed at this, for of course he was a mighty warrior and swift of foot, whereas the Tortoise was heavy and slow.
“How big a head start do you need?” he asked the Tortoise with a smile.
“Ten meters,” the latter replied.
Achilles laughed louder than ever. “You will surely lose, my friend, in that case,” he told the Tortoise, “but let us race, if you wish it.”
“On the contrary,” said the Tortoise, “I will win, and I can prove it to you by a simple argument.”
“Go on then,” Achilles replied, with less confidence than he felt before. He knew he was the superior athlete, but he also knew the Tortoise had the sharper wits, and he had lost many a bewildering argument with him before this.
“Suppose,” began the Tortoise, “that you give me a 10-meter head start. Would you say that you could cover that 10 meters between us very quickly?”
“Very quickly,” Achilles affirmed.
“And in that time, how far should I have gone, do you think?”
“Perhaps a meter – no more,” said Achilles after a moment's thought.
“Very well,” replied the Tortoise, “so now there is a meter between us. And you would catch up that distance very quickly?”
“Very quickly indeed!”
“And yet, in that time I shall have gone a little way farther, so that now you must catch that distance up, yes?”
“Ye-es,” said Achilles slowly.
“And while you are doing so, I shall have gone a little way farther, so that you must then catch up the new distance,” the Tortoise continued smoothly.
Achilles said nothing.
“And so you see, in each moment you must be catching up the distance between us, and yet I – at the same time – will be adding a new distance, however small, for you to catch up again.”
“Indeed, it must be so,” said Achilles wearily.
“And so you can never catch up,” the Tortoise concluded sympathetically.
“You are right, as always,” said Achilles sadly – and conceded the race.




At first this may seem impossible: adding up an infinite number of positive distances should give an infinite distance for the sum. But it doesn't – in this case it gives a finite sum; indeed, all these distances add up to 1! A little reflection will reveal that this isn't so strange after all: if I can divide up a finite distance into an infinite number of small distances, then adding all those distances together should just give me back the finite distance I started with. (An infinite sum such as the one above is known in mathematics as an infinite series, and when such a sum adds up to a finite number we say that the series is summable.)


>>hee... inggris nih"-"
This comment has been removed by the author.
ReplyDelete