Showing posts with label ilmu. Show all posts
Showing posts with label ilmu. Show all posts

Sunday, December 30, 2012

Image Map

kuliah itu gak penting , yang penting tugasnya..
hahahaa /*jangan di tiru lhoo
yang penting itu ngerti dan mudeng yang di pelajari

jadi gini,
awalnya aku penasaran gimanasih cara nya ngasih link ke dalam peta, em.. gini maksudnya,
aku punya sebuah gambar peta pulau jawa, nah di dalam peta itu tergambar sebuah kota Klaten, nah aku pinginnya ketika aku arahin pointerku ke kota Klaten itu dan "klik", kemudian aku di bawa ke halaman web nya kota Klaten,nah itu gimana ya.. ?
simple !
awalnya aku tanya sana sini , siapa siapa aku tanyain, kmdian aku mikir, em mosok aplud gambar masukin ke body, kmdian di bodi itu di pilah" kotak" kecil, nah ntar masing" kotak di
in, kmdian di kasih link, ah ribet !! pusing !!

pie ya...? --> tanya google..
kemudian aku nemu sebuah artikel yg sangat membantu dan memintaku untuk menghubungi alamat ini [http://www.image-maps.com]  :) joss!!
1. upload gambarnya
2. ok
3. continue...
4. pilih sebelah kanan, ada rectangle dan custom shape
    terserah pilih mana, rectangle buat kotak, custom shape buat tidak kotak (*hahaa
5. and theeeeeeeen.... setelah selesai, "get the code"
6. pilih HTML CODE
    copy-paste
cipz kan ? :)

Friday, July 8, 2011

KONTUR KALISORO TAWANGMANGU

kalisoro tawangmangu

KALISORO adalah desa yang terletak di daerah TAWANGMANGU. Kalisoro merupakan desa dengan lahan paertanian stevia. Stevia sendiri sebenarnya adalah tanaman asli dari Amerika. Daun stevia rasanya manis, sehingga daun ini dimanfaatkan sebagai pemanis (pengganti gula). Dengan yang glikosida steviol ekstrak memiliki hingga 300 kali kemanisan gula. Stevia yang rendah karbohidrat , rendah gula alternatif makanan. Karena Stevia memiliki efek minimal terhadap glukosa darah , hal ini menarik sebagai pemanis alami untuk orang diet karbohidrat-dikendalikan .
dengan bantuan sebuah alat, yang biasa kita sebut 'GPS' alat untuk mencari titik koordinat lintang dan bujur.
lalu kami peroleh data seperti ini :
No
DPL (m)
S (Bujur)
E (Lintang)
Ujung 1
1
1220
070 39’ 925”
1110 08’ 591”
2
1221
070 39’ 923”
1110 08’ 591”
3
1221
070 39’ 922”
1110 08’ 590”
4
1219
070 39’ 922”
1110 08’ 600”
5
1218
070 39’ 916”
1110 08’ 600”
6
1218
070 39’ 915”
1110 08’ 588”
7
1202
070 39’ 916”
1110 08’ 590”
8
1212
070 39’ 920”
1110 08’ 588”
9
1204
070 39’ 908”
1110 08’ 591”
10
1215
070 39’ 907”
1110 08’ 590”
11
1209
070 39’ 915”
1110 08’ 590”
12
1213
070 39’ 916”
1110 08’ 591”
13
1208
070 39’ 914”
1110 08’ 591”
Tengah
1
1210
070 39’ 918”
1110 08’ 595”
2
1208
070 39’ 920”
1110 08’ 597”
3
1207
070 39’ 919”
1110 08’ 601”
4
1214
070 39’ 910”
1110 08’ 592”
5
1209
070 39’ 921”
1110 08’ 594”
6
1209
070 39’ 919”
1110 08’ 596”
7
1220
070 39’ 918”
1110 08’ 591”
8
1211
070 39’ 919”
1110 08’ 594”
9
1204
070 39’ 917”
1110 08’ 595”
10
1222
070 39’ 922”
1110 08’ 591”
11
1207
070 39’ 916”
1110 08’ 597”
12
1215
070 39’ 912”
1110 08’ 604”
13
1211
070 39’ 924”
1110 08’ 595”
Ujung 2
1
1209
070 39’ 911”
1110 08’ 602”
2
1210
070 39’ 913”
1110 08’ 600”
3
1212
070 39’ 913”
1110 08’ 597”
4
1214
070 39’ 916”
1110 08’ 596”
5
1215
070 39’ 913”
1110 08’ 595”
6
1216
070 39’ 916”
1110 08’ 595”
7
1219
070 39’ 918”
1110 08’ 596”
8
1221
070 39’ 923”
1110 08’ 595”
9
1221
070 39’ 924”
1110 08’ 596”
10
1221
070 39’ 924”
1110 08’ 595”
11
1220
070 39’ 923”
1110 08’ 595”
12
1213
070 39’ 924”
1110 08’ 600”
13
1212
070 39’ 924”
1110 08’ 591”
kemudian dicari dengan google earth dan di peroleh gambar ini :
disitulah letaknya.

dari data tersebut diperoleh jenis tanah disini yaitu berjenis andosol. Tanah andosol adalah tanah yang memiliki ciri-ciri warna gelap(hitam), abu-abu, coklat tua hingga kekuning-kuningan.. tanah jenis ini biasanya subur dan bertekstur gembur . sangat ringan di cangkul dan pori-pori tanahnya memudahkan sirkulasi udara masuk ke akar tanaman. Dan pengolahannya mudah sehingga petani menyukainya.
Pemanfaatan tanah ini kebanyakan digunakan untuk perkebunan the, kopi, pinus. Selain itu, dalam pertanian, tanah ini banyak dimanfaatkan untuk sawah, sayur-mayur, bunga otong, dan palawija.
Perkebunan teh disana sudah banyak. Saya sudah pernah menemuinya ketika saya sedang berada di Tawangmangu wilayah desa ‘Segoro gunung’ . jadi tanah yang seperti ini, selain ditanami stevia, cocok juga ditanami sayu-mayur yang yang natinya dijual ke pasar di kota-kota. Atau palawija yang memiliki untung lebih besar.
Namun, tanah andosol memiliki kelemahan. Karena tanah ini sangat gembur, maka mudah terjadi longsor, terseret air hujan. Oleh Karen itu. Para petani menyiasatinya dengan metode tanam berteras. Dan supaya maksimal hasilnya, di antara sela-sela teras bertingkat itu bisa ditanami tanaman keras penguat.

daftar pustaka :



saya , rohmania putri anggota kelompok bersama : Aisha alfiani dan Ika Tofika Rini.

(mant_manzz)

Tuesday, September 7, 2010

haaH...
pusing nihh liat buannyak tulisan -.-
b'hubung uda ngantuck" ,, saia copy_paste adjah dr om GOOGle..
nih,, paradox zeno :
Zeno’s Paradox of the Tortoise and Achilles

eno of Elea (circa 450 b.c.) is credited with creating several famous paradoxes, but by far the best known is the paradox of the Tortoise and Achilles. (Achilles was the great Greek hero of Homer's The Iliad.) It has inspired many writers and thinkers through the ages, notably Lewis Carroll and Douglas Hofstadter, who also wrote dialogues involving the Tortoise and Achilles.
The original goes something like this:

The Tortoise challenged Achilles to a race, claiming that he would win as long as Achilles gave him a small head start. Achilles laughed at this, for of course he was a mighty warrior and swift of foot, whereas the Tortoise was heavy and slow.
“How big a head start do you need?” he asked the Tortoise with a smile.
“Ten meters,” the latter replied.
Achilles laughed louder than ever. “You will surely lose, my friend, in that case,” he told the Tortoise, “but let us race, if you wish it.”
“On the contrary,” said the Tortoise, “I will win, and I can prove it to you by a simple argument.”
“Go on then,” Achilles replied, with less confidence than he felt before. He knew he was the superior athlete, but he also knew the Tortoise had the sharper wits, and he had lost many a bewildering argument with him before this.
“Suppose,” began the Tortoise, “that you give me a 10-meter head start. Would you say that you could cover that 10 meters between us very quickly?”
“Very quickly,” Achilles affirmed.
“And in that time, how far should I have gone, do you think?”
“Perhaps a meter – no more,” said Achilles after a moment's thought.
“Very well,” replied the Tortoise, “so now there is a meter between us. And you would catch up that distance very quickly?”
“Very quickly indeed!”
“And yet, in that time I shall have gone a little way farther, so that now you must catch that distance up, yes?”

“Ye-es,” said Achilles slowly.
“And while you are doing so, I shall have gone a little way farther, so that you must then catch up the new distance,” the Tortoise continued smoothly.
Achilles said nothing.
“And so you see, in each moment you must be catching up the distance between us, and yet I – at the same time – will be adding a new distance, however small, for you to catch up again.”
“Indeed, it must be so,” said Achilles wearily.
“And so you can never catch up,” the Tortoise concluded sympathetically.
“You are right, as always,” said Achilles sadly – and conceded the race.
Zeno's Paradox may be rephrased as follows. Suppose I wish to cross the room. First, of course, I must cover half the distance. Then, I must cover half the remaining distance. Then, I must cover half the remaining distance. Then I must cover half the remaining distance . . . and so on forever. The consequence is that I can never get to the other side of the room.
What this actually does is to make all motion impossible, for before I can cover half the distance I must cover half of half the distance, and before I can do that I must cover half of half of half of the distance, and so on, so that in reality I can never move any distance at all, because doing so involves moving an infinite number of small intermediate distances first.
Now, since motion obviously is possible, the question arises, what is wrong with Zeno? What is the "flaw in the logic?" If you are giving the matter your full attention, it should begin to make you squirm a bit, for on its face the logic of the situation seems unassailable. You shouldn't be able to cross the room, and the Tortoise should win the race! Yet we know better. Hmm.
Rather than tackle Zeno head-on, let us pause to notice something remarkable. Suppose we take Zeno's Paradox at face value for the moment, and agree with him that before I can walk a mile I must first walk a half-mile. And before I can walk the remaining half-mile I must first cover half of it, that is, a quarter-mile, and then an eighth-mile, and then a sixteenth-mile, and then a thirty-secondth-mile, and so on. Well, suppose I could cover all these infinite number of small distances, how far should I have walked? One mile! In other words,


At first this may seem impossible: adding up an infinite number of positive distances should give an infinite distance for the sum. But it doesn't – in this case it gives a finite sum; indeed, all these distances add up to 1! A little reflection will reveal that this isn't so strange after all: if I can divide up a finite distance into an infinite number of small distances, then adding all those distances together should just give me back the finite distance I started with. (An infinite sum such as the one above is known in mathematics as an infinite series, and when such a sum adds up to a finite number we say that the series is summable.)
Now the resolution to Zeno's Paradox is easy. Obviously, it will take me some fixed time to cross half the distance to the other side of the room, say 2 seconds. How long will it take to cross half the remaining distance? Half as long – only 1 second. Covering half of the remaining distance (an eighth of the total) will take only half a second. And so one. And once I have covered all the infinitely many sub-distances and added up all the time it took to traverse them? Only 4 seconds, and here I am, on the other side of the room after all.
And poor old Achilles would have won his race.


>>hee... inggris nih"-"